Multi-label Classification of Indonesian Al-Quran Translation based CNN, BiLSTM, and FastText

Studying the Qur'an is a pivotal act of worship in Islam, which necessitates a structured understanding of its verses to facilitate learning and referencing. Reflecting this complexity, each Quranic verse is rich with unique thematic elements and can be classified into a range of distinct categ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Techno. Com 2024-02, Vol.23 (1), p.37-50
Hauptverfasser: Muslikh, Ahmad Rofiqul, Akbar, Ismail, Setiadi, De Rosal Ignatius Moses, Islam, Hussain Md Mehedul
Format: Artikel
Sprache:eng ; ind
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Studying the Qur'an is a pivotal act of worship in Islam, which necessitates a structured understanding of its verses to facilitate learning and referencing. Reflecting this complexity, each Quranic verse is rich with unique thematic elements and can be classified into a range of distinct categories. This study explores the enhancement of a multi-label classification model through the integration of FastText. Employing a CNN+Bi-LSTM architecture, the research undertakes the classification of Quranic translations across categories such as Tauhid, Ibadah, Akhlak, and Sejarah. Based on model evaluation using F1-Score, it shows significant differences between the CNN+Bi-LSTM model without FastText, with the highest result being 68.70% in the 80:20 testing configuration. Conversely, the CNN+Bi-LSTM+FastText model, combining embedding size and epoch parameters, achieves a result of 73.30% with an embedding size of 200, epoch of 100, and a 90:10 testing configuration. These findings underscore the significant impact of FastText on model optimization, with an enhancement margin of 4.6% over the base model.
ISSN:2356-2579
2356-2579
DOI:10.62411/tc.v23i1.9925