Neuro-Evolution of Augmenting Topologies for Dynamic Scheduling of Hybrid Flow Shop Problem
In this paper, the Neuro-Evolution of Augmenting Topologies (NEAT) algorithm is proposed to minimize the maximum completion time in a dynamic scheduling problem of hybrid flow shops. In hybrid flow shops, machines require flexible preventive maintenance and jobs arrive randomly with uncertain proces...
Gespeichert in:
Veröffentlicht in: | Engineering proceedings 2023-09, Vol.45 (1), p.25 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the Neuro-Evolution of Augmenting Topologies (NEAT) algorithm is proposed to minimize the maximum completion time in a dynamic scheduling problem of hybrid flow shops. In hybrid flow shops, machines require flexible preventive maintenance and jobs arrive randomly with uncertain processing times. The NEAT-based approach is experimentally compared with the SPT and FIFO scheduling rules by designing problem instances. The results show that the NEAT-based scheduling method can obtain solutions with better convergence while responding quickly compared to the scheduling rules. |
---|---|
ISSN: | 2673-4591 |
DOI: | 10.3390/engproc2023045025 |