Neuro-Evolution of Augmenting Topologies for Dynamic Scheduling of Hybrid Flow Shop Problem

In this paper, the Neuro-Evolution of Augmenting Topologies (NEAT) algorithm is proposed to minimize the maximum completion time in a dynamic scheduling problem of hybrid flow shops. In hybrid flow shops, machines require flexible preventive maintenance and jobs arrive randomly with uncertain proces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering proceedings 2023-09, Vol.45 (1), p.25
Hauptverfasser: Junjie Zhang, Yarong Chen, Jabir Mumtaz, Shengwei Zhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the Neuro-Evolution of Augmenting Topologies (NEAT) algorithm is proposed to minimize the maximum completion time in a dynamic scheduling problem of hybrid flow shops. In hybrid flow shops, machines require flexible preventive maintenance and jobs arrive randomly with uncertain processing times. The NEAT-based approach is experimentally compared with the SPT and FIFO scheduling rules by designing problem instances. The results show that the NEAT-based scheduling method can obtain solutions with better convergence while responding quickly compared to the scheduling rules.
ISSN:2673-4591
DOI:10.3390/engproc2023045025