A comparison among different Hill-type contraction dynamics formulations for muscle force estimation

Muscle is a type of tissue able to contract and, thus, shorten, producing a pulling force able to generate movement. The analysis of its activity is essential to understand how the force is generated to perform a movement and how that force can be estimated from direct or indirect measurements. Hill...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanical sciences (Göttingen) 2016-01, Vol.7 (1), p.19-29
Hauptverfasser: Romero, F, Alonso, F. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Muscle is a type of tissue able to contract and, thus, shorten, producing a pulling force able to generate movement. The analysis of its activity is essential to understand how the force is generated to perform a movement and how that force can be estimated from direct or indirect measurements. Hill-type muscle model is one of the most used models to describe the mechanism of force production. It is composed by different elements that describe the behaviour of the muscle (contractile, series elastic and parallel elastic element) and tendon. In this work we analyze the differences between different formulations found in the literature for these elements. To evaluate the differences, a flexo-extension movement of the arm was performed, using as input to the different models the surface electromyography signal recorded and the muscle-tendon lengths and contraction velocities obtained by means of inverse dynamic analysis. The results show that the force predicted by the different models is similar and the main differences in muscle force prediction were observed at full-flexion. The results are expected to contribute in the selection of the different formulations of Hill-type muscle model to solve a specific problem.
ISSN:2191-916X
2191-9151
2191-916X
DOI:10.5194/ms-7-19-2016