Towards regionally forecasting shallow subsidence in the Netherlands

The Netherlands is subject to anthropogenically induced deep-source and shallow subsidence. Deep sources are related to the extraction of hydrocarbons or salt mining activities, whereas shallow subsidence comprise compaction, shrinkage and oxidation of clay and peat under progressive lowering ground...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the International Association of Hydrological Sciences 2020-04, Vol.382, p.427-431
Hauptverfasser: Candela, Thibault, Koster, Kay, Stafleu, Jan, Visser, Wilfred, Fokker, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Netherlands is subject to anthropogenically induced deep-source and shallow subsidence. Deep sources are related to the extraction of hydrocarbons or salt mining activities, whereas shallow subsidence comprise compaction, shrinkage and oxidation of clay and peat under progressive lowering groundwater levels. At TNO – Geological Survey of the Netherlands, deep-source and shallow subsidence are presently investigated separately. Forward and inverse modelling techniques are generally deployed to forecast subsidence caused by deep sources, whereas shallow subsidence is predicted using the high-resolution geological 3-D subsurface model GeoTOP. A new approach is proposed which encompasses forward and inverse modelling techniques and GeoTOP. Such combination will yield a powerful shallow subsidence forecasting model, which would be a critical step forward in analyzing shallow subsidence in the Netherlands on a regional scale. In the present contribution, we sketch the setup of this new approach that combines subsidence measurements, GeoTOP subsurface data, and data assimilation of subsidence with the help of state-of-the-art forward and inverse modelling techniques. The setup uses ensemble technology to catch uncertainties of parameters, different model choices, and implicit correlations. With such a setup, forecasts can be faithfully accompanied with a quality measure that enables to judge its relevance and confidence range.
ISSN:2199-899X
2199-8981
2199-899X
DOI:10.5194/piahs-382-427-2020