Cohomology of simple modules for sl3(k) in characteristic 3

In this paper we calculate cohomology of a classical Lie algebra of type A2 over an algebraically field k of characteristic p = 3 with coefficients in simple modules. To describe their structure we will consider them as modules over an algebraic group SL3(k). In the case of characteristic p = 3, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Қарағанды университетінің хабаршысы. Математика сериясы 2021-01, Vol.103 (3), p.36-43
1. Verfasser: Ibrayeva, A.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we calculate cohomology of a classical Lie algebra of type A2 over an algebraically field k of characteristic p = 3 with coefficients in simple modules. To describe their structure we will consider them as modules over an algebraic group SL3(k). In the case of characteristic p = 3, there are only two peculiar simple modules: a simple that module isomorphic to the quotient module of the adjoint module by the center, and a one-dimensional trivial module. The results on the cohomology of simple nontrivial module are used for calculating the cohomology of the adjoint module. We also calculate cohomology of the simple quotient algebra Lie of A2 by the center.
ISSN:2518-7929
2663-5011
DOI:10.31489/2021M3/36-43