Structure of membrane diacylglycerol kinase in lipid bilayers

Diacylglycerol kinase (DgkA) is a small integral membrane protein, responsible for the ATP-dependent phosphorylation of diacylglycerol to phosphatidic acid. Its structures reported in previous studies, determined in detergent micelles by solution NMR and in monoolein cubic phase by X-ray crystallogr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications biology 2021-03, Vol.4 (1), p.282-282, Article 282
Hauptverfasser: Li, Jianping, Shen, Yang, Chen, Yanke, Zhang, Zhengfeng, Ma, Shaojie, Wan, Qianfen, Tong, Qiong, Glaubitz, Clemens, Liu, Maili, Yang, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Diacylglycerol kinase (DgkA) is a small integral membrane protein, responsible for the ATP-dependent phosphorylation of diacylglycerol to phosphatidic acid. Its structures reported in previous studies, determined in detergent micelles by solution NMR and in monoolein cubic phase by X-ray crystallography, differ significantly. These differences point to the need to validate these detergent-based structures in phospholipid bilayers. Here, we present a well-defined homo-trimeric structure of DgkA in phospholipid bilayers determined by magic angle spinning solid-state NMR (ssNMR) spectroscopy, using an approach combining intra-, inter-molecular paramagnetic relaxation enhancement (PRE)-derived distance restraints and CS-Rosetta calculations. The DgkA structure determined in lipid bilayers is different from the solution NMR structure. In addition, although ssNMR structure of DgkA shows a global folding similar to that determined by X-ray, these two structures differ in monomeric symmetry and dynamics. A comparative analysis of DgkA structures determined in three different detergent/lipid environments provides a meaningful demonstration of the influence of membrane mimetic environments on the structure and dynamics of membrane proteins. Jianping Li et al. present the homo-trimeric structure of the small integral membrane protein diacylglycerol kinase (DgkA) in phospholipid bilayers determined by magic angle spinning solid-state NMR spectroscopy. They compare the structure with structures solved by solution NMR and X-ray crystallography and provide insights into the influence of membrane mimetic environments on membrane proteins.
ISSN:2399-3642
2399-3642
DOI:10.1038/s42003-021-01802-1