Traffic analysis for 5G network slice based on machine learning

With the rise of 5G and Internet of things, especially the key technology of 5G, network slice cuts a physical network into multiple virtual end-to-end networks, each of them can obtain logically independent network resources to support richer services. 5G mobile data and sensor data converge to for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EURASIP journal on wireless communications and networking 2021-04, Vol.2021 (1), p.1-15, Article 108
Hauptverfasser: Xie, Feng, Wei, Dongxue, Wang, Zhencheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the rise of 5G and Internet of things, especially the key technology of 5G, network slice cuts a physical network into multiple virtual end-to-end networks, each of them can obtain logically independent network resources to support richer services. 5G mobile data and sensor data converge to form a growing network traffic. Traffic explosion evolved into a mixed network type, and network viruses, worms, network theft and malicious attacks are also involved. How to distinguish traffic types, block malicious traffic and make effective use of sensor data under the background of 5G network slice, and also the significance of this study.
ISSN:1687-1499
1687-1472
1687-1499
DOI:10.1186/s13638-021-01991-7