Review on Substrate and Molybdenum Back Contact in CIGS Thin Film Solar Cell

Copper Indium Gallium Selenide- (CIGS-) based solar cells have become one of the most promising candidates among the thin film technologies for solar power generation. The current record efficiency of CIGS has reached 22.6% which is comparable to the crystalline silicon- (c-Si-) based solar cells. H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Photoenergy 2018-01, Vol.2018 (2018), p.1-14
Hauptverfasser: Marsadek, Marayati Bte, Kumar, Chakrabarty Chandan, Arnou, Panagiota, Maniscalco, Biancamaria, Agileswari, Ramasamy, Ong, Kam Hoe, Bowers, Jake W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Copper Indium Gallium Selenide- (CIGS-) based solar cells have become one of the most promising candidates among the thin film technologies for solar power generation. The current record efficiency of CIGS has reached 22.6% which is comparable to the crystalline silicon- (c-Si-) based solar cells. However, material properties and efficiency on small area devices are crucial aspects to be considered before manufacturing into large scale. The process for each layer of the CIGS solar cells, including the type of substrate used and deposition condition for the molybdenum back contact, will give a direct impact to the efficiency of the fabricated device. In this paper, brief introduction on the production, efficiency, etc. of a-Si, CdTe, and CIGS thin film solar cells and c-Si solar cells are first reviewed, followed by the recent progress of substrates. Different deposition techniques’ influence on the properties of molybdenum back contact for CIGS are discussed. Then, the formation and thickness influence factors of the interfacial MoSe2 layer are reviewed; its role in forming ohmic contact, possible detrimental effects, and characterization of the barrier layers are specified. Scale-up challenges/issues of CIGS module production are also presented to give an insight into commercializing CIGS solar cells.
ISSN:1110-662X
1687-529X
DOI:10.1155/2018/9106269