Convolutional Neural Network (CNN)-Based Frame Synchronization Method

A new frame synchronization technique based on convolutional neural network (CNN) is proposed for synchronized networks. To estimate the exact packet arrival time, the receiver typically uses the correlator between the received signal and the preamble or pilot in front of the transmitted packet. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2020-10, Vol.10 (20), p.7267
Hauptverfasser: Jeong, Eui-Rim, Lee, Eui-Soo, Joung, Jingon, Oh, Hyukjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new frame synchronization technique based on convolutional neural network (CNN) is proposed for synchronized networks. To estimate the exact packet arrival time, the receiver typically uses the correlator between the received signal and the preamble or pilot in front of the transmitted packet. The conventional frame synchronization technique searches the correlation peak within the time window. In contrast, the proposed method utilizes a CNN to find the packet arrival time. Specifically, in the proposed method, the 1D correlator output is converted into a 2D matrix by reshaping, and the resulting signal is inputted to the proposed 4-layer CNN classifier. Then, the CNN predicts the packet arrival time. To verify the frame synchronization performance, computer simulation is performed for two channel models: additive white Gaussian noise and fading channels. Simulation results show that the proposed CNN-based synchronization method outperforms the conventional correlation-based technique by 2dB.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10207267