Interactive decision support methodology for near real-time response to failure events in a water distribution network
The present study proposes a new interactive methodology and an interactive tool for the response to water network failure events facilitating near real-time decision-making. The proposed methodology considers: (i) a structured yet flexible approach supporting and guiding the operator throughout the...
Gespeichert in:
Veröffentlicht in: | Journal of hydroinformatics 2021-05, Vol.23 (3), p.483-499 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present study proposes a new interactive methodology and an interactive tool for the response to water network failure events facilitating near real-time decision-making. The proposed methodology considers: (i) a structured yet flexible approach supporting and guiding the operator throughout the entire response process to water network failure events, while allowing the operator to have a final say; (ii) a novel interaction with the operator in near real time via the proposed tool (e.g. allowing operators to propose different ‘what-if’ scenarios without being hydraulic experts); (iii) the provision of automatically generated advice (e.g. optimal response solutions and assessed end-impacts) – although optimal response solutions not identified in near real time yet; and (iv) improved impact assessment using realistic impact indicators that cover different aspects of the event – which are consistently calculated for every proposed response solution (to facilitate easy comparison between different response solutions). The new methodology was applied on a semi-real case study. The results obtained demonstrated the potential of the new response methodology and its application through the interactive tool to improve water utilities' current practice. This was accomplished through supporting/guiding operators in the identification of effective response solutions with low end-impact on the consumers and low cost for the utility. |
---|---|
ISSN: | 1464-7141 1465-1734 |
DOI: | 10.2166/hydro.2020.101 |