Effect of Ducted Multi-Propeller Configuration on Aerodynamic Performance in Quadrotor Drone

Motivated by a bioinspired optimal aerodynamic design of a multi-propeller configuration, here we propose a ducted multi-propeller design to explore the improvement of lift force production and FM efficiency in quadrotor drones through optimizing the ducted multi-propeller configuration. We first co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Drones (Basel) 2021-09, Vol.5 (3), p.101
Hauptverfasser: Li, Yi, Yonezawa, Koichi, Liu, Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivated by a bioinspired optimal aerodynamic design of a multi-propeller configuration, here we propose a ducted multi-propeller design to explore the improvement of lift force production and FM efficiency in quadrotor drones through optimizing the ducted multi-propeller configuration. We first conducted a CFD-based study to explore a high-performance duct morphology in a ducted single-propeller model in terms of aerodynamic performance and duct volume. The effect of a ducted multi-propeller configuration on aerodynamic performance is then investigated in terms of the tip distance and the height difference of propellers under a hovering state. Our results indicate that the tip distance-induced interactions have a noticeable effect in impairing the lift force production and FM efficiency but are limited to small tip distances, whereas the height difference-induced interactions have an impact on enhancing the aerodynamic performance over a certain range. An optimal ducted multi-propeller configuration with a minimal tip distance and an appropriate height difference was further examined through a combination of CFD simulations and a surrogate model in a broad-parameter space, which enables a significant improvement in both lift force production and FM efficiency for the multirotor, and thus provides a potential optimal design for ducted multirotor UAVs.
ISSN:2504-446X
2504-446X
DOI:10.3390/drones5030101