Analysis of Influence of Behavioral Adoption Threshold Diversity on Multi-Layer Network

The same people exhibit various adoption behaviors for the same information on various networks. Previous studies, however, did not examine the variety of adoption behaviors on multi-layer networks or take into consideration this phenomenon. Therefore, we refer to this phenomenon, which lacks system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Switzerland), 2023-03, Vol.25 (3), p.458
Hauptverfasser: Deng, Gang, Peng, Yuting, Tian, Yang, Zhu, Xuzhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The same people exhibit various adoption behaviors for the same information on various networks. Previous studies, however, did not examine the variety of adoption behaviors on multi-layer networks or take into consideration this phenomenon. Therefore, we refer to this phenomenon, which lacks systematic analysis and investigation, as behavioral adoption diversity on multi-layered networks. Meanwhile, individual adoption behaviors have LTI (local trend imitation) characteristics that help spread information. In order to study the diverse LTI behaviors on information propagation, a two-layer network model is presented. Following that, we provide two adoption threshold functions to describe diverse LTI behaviors. The crossover phenomena in the phase transition is shown to exist through theoretical derivation and experimental simulation. Specifically, the final spreading scale displays a second-order continuous phase transition when individuals exhibit active LTI behaviors, and, when individuals behave negatively, a first-order discontinuous phase transition can be noticed in the final spreading scale. Additionally, the propagation phenomena might be impacted by the degree distribution heterogeneity. Finally, there is a good agreement between the outcomes of our theoretical analysis and simulation.
ISSN:1099-4300
1099-4300
DOI:10.3390/e25030458