Lead sulphide colloidal quantum dots for room temperature NO2 gas sensors

Colloidal quantum dots (CQDs) have been recently investigated as promising building blocks for low-cost and high-performance gas sensors due to their large effective surface-to-volume ratio and their suitability for versatile functionalization through surface chemistry. In this work we report on lea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-07, Vol.10 (1), p.12556-12556, Article 12556
Hauptverfasser: Mitri, Federica, De Iacovo, Andrea, De Luca, Massimiliano, Pecora, Alessandro, Colace, Lorenzo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Colloidal quantum dots (CQDs) have been recently investigated as promising building blocks for low-cost and high-performance gas sensors due to their large effective surface-to-volume ratio and their suitability for versatile functionalization through surface chemistry. In this work we report on lead sulphide CQDs based sensors for room temperature NO 2 detection. The sensor response has been measured for different pollutant gases including NO 2 , CH 4 , CO and CO 2 and for different concentrations in the 2.8–100 ppm range. For the first time, the influence of the QDs film thickness on the sensor response has been investigated and optimized. Upon 30 ppm NO 2 release, the best room temperature gas response is about 14 Ω/Ω, with response and recovery time of 12 s and 26 min, respectively. A detection limit of about 0.15 ppb was estimated from the slope of the sensor response and its electric noise. The gas sensors exhibit high sensitivity to NO 2 , remarkable selectivity, repeatability and full recovery after exposure.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-69478-x