Undrained Solution for Spherical Cavity Expansion in Structured Clay and Its Application in CPT
The cavity expansion theory is widely used in the analysis and prediction of cone resistance and lateral displacements in cone penetration test (CPT) and pile installation. Nowadays, the existing theoretical solutions for cavity expansion in structured clay cannot consider the influences of structur...
Gespeichert in:
Veröffentlicht in: | Shànghăi jiāotōng dàxué xuébào 2023-06, Vol.57 (6), p.709-718 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The cavity expansion theory is widely used in the analysis and prediction of cone resistance and lateral displacements in cone penetration test (CPT) and pile installation. Nowadays, the existing theoretical solutions for cavity expansion in structured clay cannot consider the influences of structure degradation on the mechanical behaviors of soil during the expanding process, which limits its applications in practical engineering to some extent. Therefore, taking the penetration of cone or pile tip as a spherical cavity expansion process in soil, based on the structured Cam-Clay (SCC) model and the large strain theory in plastic zone, the undrained spherical cavity expansion problem could be attributed to a boundary value problem of a system of ordinary differential equations about effective stress components. The equations then could be solved with stresses on the elastic-plastic boundary serving as boundary conditions. The results show that, with strengthening of soil structure, the plastic and critical st |
---|---|
ISSN: | 1006-2467 |
DOI: | 10.16183/j.cnki.jsjtu.2021.330 |