Polarisation Control in Arrays of Microlenses and Gratings: Performance in Visible-IR Spectral Ranges

Microlens arrays (MLAs) which are increasingly popular micro-optical elements in compact integrated optical systems were fabricated using a femtosecond direct laser write (fs-DLW) technique in the low-shrinkage SZ2080 photoresist. High-fidelity definition of 3D surfaces on IR transparent CaF substra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Micromachines (Basel) 2023-03, Vol.14 (4), p.798
Hauptverfasser: Mu, Haoran, Smith, Daniel, Katkus, Tomas, Gailevičius, Darius, Malinauskas, Mangirdas, Nishijima, Yoshiaki, Stoddart, Paul R, Ruan, Dong, Ryu, Meguya, Morikawa, Junko, Vasiliev, Taras, Lozovski, Valeri, Moraru, Daniel, Ng, Soon Hock, Juodkazis, Saulius
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microlens arrays (MLAs) which are increasingly popular micro-optical elements in compact integrated optical systems were fabricated using a femtosecond direct laser write (fs-DLW) technique in the low-shrinkage SZ2080 photoresist. High-fidelity definition of 3D surfaces on IR transparent CaF substrates allowed to achieve ∼50% transmittance in the chemical fingerprinting spectral region 2-5 μm wavelengths since MLAs were only ∼10 μm high corresponding to the numerical aperture of 0.3 (the lens height is comparable with the IR wavelength). To combine diffractive and refractive capabilities in miniaturised optical setup, a graphene oxide (GO) grating acting as a linear polariser was also fabricated by fs-DLW by ablation of a 1 μm-thick GO thin film. Such an ultra-thin GO polariser can be integrated with the fabricated MLA to add dispersion control at the focal plane. Pairs of MLAs and GO polarisers were characterised throughout the visible-IR spectral window and numerical modelling was used to simulate their performance. A good match between the experimental results of MLA focusing and simulations was achieved.
ISSN:2072-666X
2072-666X
DOI:10.3390/mi14040798