Polarisation Control in Arrays of Microlenses and Gratings: Performance in Visible-IR Spectral Ranges
Microlens arrays (MLAs) which are increasingly popular micro-optical elements in compact integrated optical systems were fabricated using a femtosecond direct laser write (fs-DLW) technique in the low-shrinkage SZ2080 photoresist. High-fidelity definition of 3D surfaces on IR transparent CaF substra...
Gespeichert in:
Veröffentlicht in: | Micromachines (Basel) 2023-03, Vol.14 (4), p.798 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microlens arrays (MLAs) which are increasingly popular micro-optical elements in compact integrated optical systems were fabricated using a femtosecond direct laser write (fs-DLW) technique in the low-shrinkage SZ2080
photoresist. High-fidelity definition of 3D surfaces on IR transparent CaF
substrates allowed to achieve ∼50% transmittance in the chemical fingerprinting spectral region 2-5 μm wavelengths since MLAs were only ∼10 μm high corresponding to the numerical aperture of 0.3 (the lens height is comparable with the IR wavelength). To combine diffractive and refractive capabilities in miniaturised optical setup, a graphene oxide (GO) grating acting as a linear polariser was also fabricated by fs-DLW by ablation of a 1 μm-thick GO thin film. Such an ultra-thin GO polariser can be integrated with the fabricated MLA to add dispersion control at the focal plane. Pairs of MLAs and GO polarisers were characterised throughout the visible-IR spectral window and numerical modelling was used to simulate their performance. A good match between the experimental results of MLA focusing and simulations was achieved. |
---|---|
ISSN: | 2072-666X 2072-666X |
DOI: | 10.3390/mi14040798 |