Potential Impacts of Projected Climate Change under CMIP5 RCP Scenarios on Streamflow in the Wabash River Basin

Global climate change is becoming an increasingly important issue that threatens the imperiled planet. Quantifying the impact of climate change on the streamflow has been an essential task for the proper management of water resources to mitigate this impact. This study aims to evaluate the skill of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in meteorology 2020, Vol.2020 (2020), p.1-18
Hauptverfasser: Ren, Meifang, Li, Didi, Hu, Litang, Wang, Jingrui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Global climate change is becoming an increasingly important issue that threatens the imperiled planet. Quantifying the impact of climate change on the streamflow has been an essential task for the proper management of water resources to mitigate this impact. This study aims to evaluate the skill of an artificial neural network (ANN) method in downscaling precipitation, maximum temperature, and minimum temperature and assess the potential impacts of climate change on the streamflow in the Wabash River Basin of the Midwestern United States (U.S.) using the Soil and Water Assessment Tool (SWAT). A statistical downscaling technique based on an ANN method was employed to estimate precipitation and temperature at a higher resolution. The downscaled climate projections from five general circulation models (GCMs) under the three representative concentration pathway (RCP) scenarios (i.e., RCP2.6, RCP4.5, and RCP8.5) for the periods of 2026–2050 and 2075–2099 as well as the historical period were incorporated into the SWAT model to assess the potential impact of climate change on the Wabash River regime. Calibration and validation of the SWAT model indicated the streamflow simulations matched the observed results very well. The ANN method successfully reproduced the observed maximum/minimum temperature and precipitation; however, bias in precipitation was observed in regard to the frequency distribution. Compared with the simulated streamflow in the historical period, the predicted streamflow based on the RCP scenarios showed an obvious decreasing trend, where the annual streamflows will be decreased by 13.00%, 17.59%, and 6.91% in the midcentury periods and 25.29%, 27.61%, and 15.04% in the late-century periods under the RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. Climate warming dominated the streamflow decrease under the RCP2.6 and RCP4.5 scenarios. By contrast, under RCP8.5, the streamflow was affected by the joint actions of changes in temperature and precipitation.
ISSN:1687-9309
1687-9317
DOI:10.1155/2020/9698423