Load Forecasting Techniques and Their Applications in Smart Grids
The growing success of smart grids (SGs) is driving increased interest in load forecasting (LF) as accurate predictions of energy demand are crucial for ensuring the reliability, stability, and efficiency of SGs. LF techniques aid SGs in making decisions related to power operation and planning upgra...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2023-02, Vol.16 (3), p.1480 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The growing success of smart grids (SGs) is driving increased interest in load forecasting (LF) as accurate predictions of energy demand are crucial for ensuring the reliability, stability, and efficiency of SGs. LF techniques aid SGs in making decisions related to power operation and planning upgrades, and can help provide efficient and reliable power services at fair prices. Advances in artificial intelligence (AI), specifically in machine learning (ML) and deep learning (DL), have also played a significant role in improving the precision of demand forecasting. It is important to evaluate different LF techniques to identify the most accurate and appropriate one for use in SGs. This paper conducts a systematic review of state-of-the-art forecasting techniques, including traditional techniques, clustering-based techniques, AI-based techniques, and time series-based techniques, and provides an analysis of their performance and results. The aim of this paper is to determine which LF technique is most suitable for specific applications in SGs. The findings indicate that AI-based LF techniques, using ML and neural network (NN) models, have shown the best forecast performance compared to other methods, achieving higher overall root mean squared (RMS) and mean absolute percentage error (MAPE) values. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en16031480 |