Electrochemical Sensors for Antibiotic Susceptibility Testing: Strategies and Applications

Increasing awareness of the impacts of infectious diseases has driven the development of advanced techniques for detecting pathogens in clinical and environmental settings. However, this process is hindered by the complexity and variability inherent in antibiotic-resistant species. A great deal of e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosensors 2022-02, Vol.10 (2), p.53
Hauptverfasser: Kim, Dongmin, Yoo, Seungmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Increasing awareness of the impacts of infectious diseases has driven the development of advanced techniques for detecting pathogens in clinical and environmental settings. However, this process is hindered by the complexity and variability inherent in antibiotic-resistant species. A great deal of effort has been put into the development of antibiotic-resistance/susceptibility testing (AST) sensors and systems to administer proper drugs for patient-tailored therapy. Electrochemical sensors have garnered increasing attention due to their powerful potential to allow rapid, sensitive, and real-time monitoring, alongside the low-cost production, feasibility of minimization, and easy integration with other techniques. This review focuses on the recent advances in electrochemical sensing strategies that have been used to determine the level of antibiotic resistance/susceptibility of pathogenic bacteria. The recent examples of the current electrochemical AST sensors discussed here are classified into four categories according to what is detected and quantitated: the presence of antibiotic-resistant genes, changes in impedance caused by cell lysis, current response caused by changes in cellular membrane properties, and changes in the redox state of redox molecules. It also discusses potential strategies for the development of electrochemical AST sensors, with the goal of broadening their practical applications across various scientific and technological fields.
ISSN:2227-9040
2227-9040
DOI:10.3390/chemosensors10020053