Out of the swampland with multifield quintessence?

A bstract Multifield models with a curved field space have already been shown to be able to provide viable quintessence models for steep potentials that satisfy swampland bounds. The simplest dynamical systems of this type are obtained by coupling Einstein gravity to two scalar fields with a curved...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2020-10, Vol.2020 (10), p.1-17, Article 35
Hauptverfasser: Cicoli, Michele, Dibitetto, Giuseppe, Pedro, Francisco G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract Multifield models with a curved field space have already been shown to be able to provide viable quintessence models for steep potentials that satisfy swampland bounds. The simplest dynamical systems of this type are obtained by coupling Einstein gravity to two scalar fields with a curved field space. In this paper we study the stability properties of the non-trivial fixed points of this dynamical system for a general functional dependence of the kinetic coupling function and the scalar potential. We find the existence of non-geodesic trajectories with a sharp turning rate in field space which can give rise to late-time cosmic acceleration with no need for flat potentials. In particular, we discuss the properties of the phase diagram of the system and the corresponding time evolution when varying the functional dependence of the kinetic coupling. Interestingly, upon properly tuning the initial conditions of the field values, we find trajectories that can describe the current state of the universe. This could represent a promising avenue to build viable quintessence models out of the swampland if they could be consistently embedded in explicit string constructions.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP10(2020)035