Preparation of Chloromethylated Pitch–Based Hyper–Crosslinked Polymers and An Immobilized Acidic Ionic Liquid as A Catalyst for the Synthesis of Biodiesel

Hyper-crosslinking polymers and its immobilized acid ionic liquid catalyst were prepared using cheap pitch, as a monomer, through hyper-crosslinking reactions and allyl chloride, as a chlorine source, for chloromethylation and further grafting with imidazole and functionalizing with sulfonic acid. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysts 2019-11, Vol.9 (11), p.963
Hauptverfasser: Pei, Baoyou, Xiang, Xiaoyan, Liu, Ting, Li, Dongliang, Zhao, Chaoyang, Qiu, Rongxing, Chen, Xiaoyan, Lin, Jinqing, Luo, Xiaoyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hyper-crosslinking polymers and its immobilized acid ionic liquid catalyst were prepared using cheap pitch, as a monomer, through hyper-crosslinking reactions and allyl chloride, as a chlorine source, for chloromethylation and further grafting with imidazole and functionalizing with sulfonic acid. The polymers were characterized by FE-SEM, FTIR, TG, and nitrogen sorption. The grafting ratios of the chloromethylated pitch-based hyper-crosslinked polymer (HCPpitch–CH2–Cl) and immobilized acid ionic liquid [HCPpitch–Im–Pros][Tos] were 3.5 mmol/g and 3.0 mmol/g, and the BET specific surface areas were 520 m2/g and 380 m2/g, respectively. This strategy provides an easy approach to preparing highly stable and acid functionalized mesoporous catalysts. The immobilized acidic ionic liquid was used as a catalyst for the esterification of oleic acid and methanol to synthesize biodiesel. The results demonstrated that under the optimal conditions of an alcohol to acid molar ratio of 7:1, ionic liquid to oleic acid molar ratio of 0.12, and a reaction time of 3 h at atmospheric pressure, the yield of methyl oleate can reach up to 93%. Moreover, the catalyst was reused five times without the yield decreasing significantly. This study shows that [HCPpitch–Im–Pros][Tos] is a robust catalyst for the synthesis of biodiesel.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal9110963