Experimental Heart Failure Induces Alterations of the Lung Proteome - Insight into Molecular Mechanisms

Background: Heart failure (CHF) is characterized by dyspnea and pulmonary changes. The underlying molecular adaptations are unclear, but might provide targets for therapeutic interventions. We therefore conceived a study to determine molecular changes of early pulmonary stress failure in a model of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular physiology and biochemistry 2014-01, Vol.33 (3), p.692-704
Hauptverfasser: Birner, Christoph, Hierl, Sarah, Dietl, Alexander, Hupf, Julian, Jungbauer, Carsten, Schmid, Peter M., Rümmele, Petra, Deutzmann, Rainer, Riegger, Günter, Luchner, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Heart failure (CHF) is characterized by dyspnea and pulmonary changes. The underlying molecular adaptations are unclear, but might provide targets for therapeutic interventions. We therefore conceived a study to determine molecular changes of early pulmonary stress failure in a model of tachycardia-induced heart failure. Methods: CHF was induced in rabbits by progessive right ventricular pacing (n=6). Invasive blood pressure measurements and echocardiography were repeatedly performed. Untreated animals served as controls (n=6). Pulmonary tissue specimens were subjected to two-dimensional gel electrophoresis, and differentially expressed proteins were identified by mass spectrometry. Selected proteins were validated by Western Blot analysis and localized by immunohistochemical staining. Results: CHF animals were characterized by significantly altered functional, morphological, and hemodynamic parameters. Upon proteomic profiling, a total of 33 proteins was found to be differentially expressed in pulmonary tissue of CHF animals (18 up-regulated, and 15 down-regulated) belonging to 4 functional groups: 1. proteins involved in maintaining cytoarchitectural integrity, 2. plasma proteins indicating impaired alveolar-capillary permeability, 3. proteins with antioxidative properties, and 4. proteins participating in the metabolism of selenium compounds Conclusion: Experimental heart failure profoundly alters the pulmonary proteome. Our results supplement the current knowledge of pulmonary stress failure by specifying its molecular fundament.
ISSN:1015-8987
1421-9778
DOI:10.1159/000358645