Experimental Heart Failure Induces Alterations of the Lung Proteome - Insight into Molecular Mechanisms
Background: Heart failure (CHF) is characterized by dyspnea and pulmonary changes. The underlying molecular adaptations are unclear, but might provide targets for therapeutic interventions. We therefore conceived a study to determine molecular changes of early pulmonary stress failure in a model of...
Gespeichert in:
Veröffentlicht in: | Cellular physiology and biochemistry 2014-01, Vol.33 (3), p.692-704 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background: Heart failure (CHF) is characterized by dyspnea and pulmonary changes. The underlying molecular adaptations are unclear, but might provide targets for therapeutic interventions. We therefore conceived a study to determine molecular changes of early pulmonary stress failure in a model of tachycardia-induced heart failure. Methods: CHF was induced in rabbits by progessive right ventricular pacing (n=6). Invasive blood pressure measurements and echocardiography were repeatedly performed. Untreated animals served as controls (n=6). Pulmonary tissue specimens were subjected to two-dimensional gel electrophoresis, and differentially expressed proteins were identified by mass spectrometry. Selected proteins were validated by Western Blot analysis and localized by immunohistochemical staining. Results: CHF animals were characterized by significantly altered functional, morphological, and hemodynamic parameters. Upon proteomic profiling, a total of 33 proteins was found to be differentially expressed in pulmonary tissue of CHF animals (18 up-regulated, and 15 down-regulated) belonging to 4 functional groups: 1. proteins involved in maintaining cytoarchitectural integrity, 2. plasma proteins indicating impaired alveolar-capillary permeability, 3. proteins with antioxidative properties, and 4. proteins participating in the metabolism of selenium compounds Conclusion: Experimental heart failure profoundly alters the pulmonary proteome. Our results supplement the current knowledge of pulmonary stress failure by specifying its molecular fundament. |
---|---|
ISSN: | 1015-8987 1421-9778 |
DOI: | 10.1159/000358645 |