MSLKSTNet: Multi-Scale Large Kernel Spatiotemporal Prediction Neural Network for Air Temperature Prediction

The spatiotemporal forecasting of temperature is a critical issue in meteorological prediction, with significant implications for fields such as agriculture and energy. With the rapid advancement of data-driven deep learning methods, deep learning-based spatiotemporal sequence forecasting models hav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmosphere 2024-09, Vol.15 (9), p.1114
Hauptverfasser: Gao, Feng, Fei, Jiaen, Ye, Yuankang, Liu, Chang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The spatiotemporal forecasting of temperature is a critical issue in meteorological prediction, with significant implications for fields such as agriculture and energy. With the rapid advancement of data-driven deep learning methods, deep learning-based spatiotemporal sequence forecasting models have seen widespread application in temperature spatiotemporal forecasting. However, statistical analysis reveals that temperature evolution varies across temporal and spatial scales due to factors like terrain, leading to a lack of existing temperature prediction models that can simultaneously learn both large-scale global features and small to medium-scale local features over time. To uniformly model temperature variations across different temporal and spatial scales, we propose the Multi-Scale Large Kernel Spatiotemporal Attention Neural Network (MSLKSTNet). This model consists of three main modules: a feature encoder, a multi-scale spatiotemporal translator, and a feature decoder. The core module of this network, Multi-scale Spatiotemporal Attention (MSSTA), decomposes large kernel convolutions from multi-scale perspectives, capturing spatial feature information at different scales, and focuses on the evolution of multi-scale spatial features over time, encompassing both global smooth changes and local abrupt changes. The results demonstrate that MSLKSTNet achieves superior performance, with a 35% improvement in the MSE metric compared to SimVP. Ablation studies confirmed the significance of the MSSTA unit for spatiotemporal forecasting tasks. We apply the model to the regional ERA5-Land reanalysis temperature dataset, and the experimental results indicate that the proposed method delivers the best forecasting performance, achieving a 42% improvement in the MSE metric over the widely used ConvLSTM model for temperature prediction. This validates the effectiveness and superiority of MSLKSTNet in temperature forecasting tasks.
ISSN:2073-4433
2073-4433
DOI:10.3390/atmos15091114