Generative Adversarial Network for Damage Identification in Civil Structures
In recent years, many efforts have been made to develop efficient deep-learning-based structural health monitoring (SHM) methods. Most of the proposed methods employ supervised algorithms that require data from different damaged states of a structure in order to monitor its health conditions. As suc...
Gespeichert in:
Veröffentlicht in: | Shock and vibration 2021, Vol.2021 (1) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In recent years, many efforts have been made to develop efficient deep-learning-based structural health monitoring (SHM) methods. Most of the proposed methods employ supervised algorithms that require data from different damaged states of a structure in order to monitor its health conditions. As such data are not usually available for real civil structures, using supervised algorithms for the health monitoring of these structures might be impracticable. This paper presents a novel two-stage technique based on generative adversarial networks (GANs) for unsupervised SHM and damage identification. In the first stage, a deep convolutional GAN (DCGAN) is used to detect and quantify structural damages; the detected damages are then localized in the second stage using a conditional GAN (CGAN). Raw acceleration signals from a monitored structure are used for this purpose, and the networks are trained by only the intact state data of the structure. The proposed method is validated through applications on the numerical model of a bridge health monitoring (BHM) benchmark structure, an experimental steel structure located at Qatar University, and the full-scale Tianjin Yonghe Bridge. |
---|---|
ISSN: | 1070-9622 1875-9203 |
DOI: | 10.1155/2021/3987835 |