Forest Area and Structural Variable Estimation in Boreal Forest Using Suomi NPP VIIRS Data and a Sample from VHR Imagery
Our objective was to develop a method for the assessment of forest area and structural variables for cases in which the availability of representative ground reference data is poor and these data are not collected from the whole area of interest. We implemented two independent approaches to the esti...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2023-06, Vol.15 (12), p.3029 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Our objective was to develop a method for the assessment of forest area and structural variables for cases in which the availability of representative ground reference data is poor and these data are not collected from the whole area of interest. We implemented two independent approaches to the estimation of the forest variables of a European boreal forest: (i) the computation of wall-to-wall estimates using moderate- to low-resolution VIIRS imagery from the Suomi NPP mission; and (ii) the visual interpretation of plots of samples from very high resolution (VHR) satellite data obtained via a two-stage design. Our focus was on the statistical comparison of forest resources at a country or larger level. The study area was boreal forest ranging from Norway to the Ural Mountains in Russia. We computed a seamless mosaic from 111 VIIRS images. From the mosaic, we computed predictions for the forest area, growing stock volume, height of the dominating tree layer, proportion of conifers and broadleaved trees, site fertility class, and leaf area index. The reference data for the VIIRS imagery were national forest inventory (NFI)-based raster maps from Finland. The first stage sample of VHR data included 42 images; of these, a second stage sample of 2690 plots was visually interpreted for the same variables. The forest area prediction from VIIRS for the whole study area was 1.2% higher than the VHR-based result. All other structural variable predictions using VIIRS fitted within the 95% confidence intervals computed from the VHR sample except for estimates of the main tree species groups, which were outside the limits. A comparison of VIIRS-based forest area estimates using Finnish and Swedish NFI data indicated overestimations of 10.0% points and 4.6% points, whereas the total growing stock volumes were overestimated by 8% and underestimated by 3.4%, respectively. The correlation coefficients between the VIIRS and VHR image predictions at the 42 VHR image locations varied from 0.70 to 0.85. The VIIRS maps strongly averaged the local predictions due to their coarse spatial resolutions. Based on our findings, the approach using two independent estimations yielded similar figures for the central forest variables for the European boreal forest. A model computed using reference data from a small part of the area of interest can provide satisfactory predictions for a much larger area with a similar biome. Therefore, our concept is applicable to the estimation and overall |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs15123029 |