A Facile Centrifuge Coating Method for High-Performance CsPbBr3 Compact and Crack-Free Nanocrystal Thin Film Photodetector

All-inorganic perovskite quantum dots (QDs), a promising semiconductor material, is suitable for new generation optoelectronic application. While there are many kinds of coating procedures for producing perovskite QDs peorovskite film, those methods require post-treatments and an additional dispersi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystals (Basel) 2022-05, Vol.12 (5), p.587
Hauptverfasser: Tran, Phuong-Nam, Tran, Ba-Duc, Nguyen, Duy-Cuong, Nguyen, Thi-Lan, Tran, Van-Dang, Duong, Thanh-Tung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:All-inorganic perovskite quantum dots (QDs), a promising semiconductor material, is suitable for new generation optoelectronic application. While there are many kinds of coating procedures for producing perovskite QDs peorovskite film, those methods require post-treatments and an additional dispersion support agent while still retaining pinholes and cracks. In this work, we report a facile method to produce CsPbBr3 film on a pre-patterned Pt electrode using a centrifuge coating method for photodetector (PD) application. Compact and crack-free films with ~500 nm thick from various particle sizes of 8 nm, 12 nm, and >30 nm were achieved with a suitable ratio of toluene/ethyl acetate solvent for visible light photodetector application. The optimized device has an on/off ratio of 103, detectivity of 3 × 1012 Jones, and responsivity of 6 A/W. In comparison, the on/off ratio of the device fabricated by the centrifuge coating method was 102 times higher than by the drop-coating method. The PD performance exhibited considerable moisture stability at mild high ambient temperature with no encapsulation for more than two weeks. The results suggest that this is a potential method for fabricating all inorganic perovskite nano-semiconductor films for further optoelectronic application in photodetectors, LEDs, and solar cells.
ISSN:2073-4352
2073-4352
DOI:10.3390/cryst12050587