Extremal Structure on Revised Edge-Szeged Index with Respect to Tricyclic Graphs
For a given graph G, Sze*(G)=∑e=uv∈E(G)mu(e)+m0(e)2mv(e)+m0(e)2 is the revised edge-Szeged index of G, where mu(e) and mv(e) are the number of edges of G lying closer to vertex u than to vertex v and the number of edges of G lying closer to vertex v than to vertex u, respectively, and m0(e) is the n...
Gespeichert in:
Veröffentlicht in: | Symmetry (Basel) 2022-08, Vol.14 (8), p.1646 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a given graph G, Sze*(G)=∑e=uv∈E(G)mu(e)+m0(e)2mv(e)+m0(e)2 is the revised edge-Szeged index of G, where mu(e) and mv(e) are the number of edges of G lying closer to vertex u than to vertex v and the number of edges of G lying closer to vertex v than to vertex u, respectively, and m0(e) is the number of edges equidistant to u and v. In this paper, we identify the lower bound of the revised edge-Szeged index among all tricyclic graphs and also characterize the extremal structure of graphs that attain the bound. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym14081646 |