Multiscale Modeling of Silicon Carbide Cladding for Nuclear Applications: Thermal Performance Modeling
The complex multiscale and anisotropic nature of silicon carbide (SiC) ceramic matrix composite (CMC) makes it difficult to accurately model its performance in nuclear applications. The existing models for nuclear grade composite SiC do not account for the microstructural features and how these feat...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2024-12, Vol.17 (23), p.6124 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The complex multiscale and anisotropic nature of silicon carbide (SiC) ceramic matrix composite (CMC) makes it difficult to accurately model its performance in nuclear applications. The existing models for nuclear grade composite SiC do not account for the microstructural features and how these features can affect the thermal and structural behavior of the cladding and its anisotropic properties. In addition to the microstructural features, the properties of individual constituents of the composites and fiber tow architecture determine the bulk properties. Models for determining the relationship between the individual constituents’ properties and the bulk properties of SiC composites for nuclear applications are absent, although empirical relationships exist in the literature. Here, a hierarchical multiscale modeling approach was presented to address this challenge. This modular approach addressed this difficulty by dividing the various aspects of the composite material into separate models at different length scales, with the evaluated property from the lower-length-scale model serving as an input to the higher-length-scale model. The multiscale model considered the properties of various individual constituents of the composite material (fiber, matrix, and interphase), the porosity in the matrix, the fiber volume fraction, the composite architecture, the tow thickness, etc. By considering inhomogeneous and anisotropic contributions intrinsically, our bottom-up multiscale modeling strategy is naturally physics-informed, bridging constitutive law from micromechanics to meso-mechanics and structural mechanics. The effects that these various physical attributes and thermo-physical properties have on the composite’s bulk thermal properties were easily evaluated and demonstrated through the various analyses presented herein. Since silicon carbide fiber-reinforced SiC CMCs are also promising thermal–structural materials with a broad range of high-end technology applications beyond nuclear applications, we envision that the multiscale modeling method we present here may prove helpful in future efforts to develop and construct reinforced CMCs and other advanced composite nuclear materials, such as MAX phase materials, that can service under harsh environments of ultrahigh temperatures, oxidation, corrosion, and/or irradiation. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en17236124 |