Extracellular Overexpression of a Neutral Pullulanase in Bacillus subtilis through Multiple Copy Genome Integration and Atypical Secretion Pathway Enhancement
Neutral pullulanases, having a good application prospect in trehalose production, showed a limited expression level. In order to address this issue, two approaches were utilized to enhance the yield of a new neutral pullulanase variant (PulA3E) in . One involved using multiple copies of genome integ...
Gespeichert in:
Veröffentlicht in: | Bioengineering (Basel) 2024-06, Vol.11 (7), p.661 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Neutral pullulanases, having a good application prospect in trehalose production, showed a limited expression level. In order to address this issue, two approaches were utilized to enhance the yield of a new neutral pullulanase variant (PulA3E) in
. One involved using multiple copies of genome integration to increase its expression level and fermentation stability. The other focused on enhancing the PulA-type atypical secretion pathway to further improve the secretory expression of PulA3E. Several strains with different numbers of genome integrations, ranging from one to four copies, were constructed. The four-copy genome integration strain PD showed the highest extracellular pullulanase activity. Additionally, the integration sites
,
, and
were selected based on their ability to enhance the PulA-type atypical secretion pathway. Furthermore, overexpressing the predicated regulatory genes
and
of the PulA-type atypical secretion pathway in PD further improved its extracellular expression. Three-liter fermenter scale-up production of PD and PD-ARY yielded extracellular pullulanase activity of 1767.1 U/mL at 54 h and 2465.1 U/mL at 78 h, respectively. Finally, supplementing PulA3E with 40 U/g maltodextrin in the multi-enzyme catalyzed system resulted in the highest trehalose production of 166 g/L and the substrate conversion rate of 83%, indicating its potential for industrial application. |
---|---|
ISSN: | 2306-5354 2306-5354 |
DOI: | 10.3390/bioengineering11070661 |