The General Position Problem on Kneser Graphs and on Some Graph Operations

A vertex subset of a graph is a general position set of if no vertex of lies on a geodesic between two other vertices of . The cardinality of a largest general position set of is the general position number (gp-number) gp( ) of . The gp-number is determined for some families of Kneser graphs, in par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discussiones Mathematicae. Graph Theory 2021-11, Vol.41 (4), p.1199-1213
Hauptverfasser: Ghorbani, Modjtaba, Maimani, Hamid Reza, Momeni, Mostafa, Mahid, Farhad Rahimi, Klavžar, Sandi, Rus, Gregor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A vertex subset of a graph is a general position set of if no vertex of lies on a geodesic between two other vertices of . The cardinality of a largest general position set of is the general position number (gp-number) gp( ) of . The gp-number is determined for some families of Kneser graphs, in particular for 2), ≥ 4, and 3), ≥ 9. A sharp lower bound on the gp-number is proved for Cartesian products of graphs. The gp-number is also determined for joins of graphs, coronas over graphs, and line graphs of complete graphs.
ISSN:1234-3099
2083-5892
DOI:10.7151/dmgt.2269