Croplanner: A Stand Density Management Decision-Support Software Suite for Addressing Volumetric Yield, End-Product and Ecosystem Service Objectives When Managing Boreal Conifers
The objectives of this study were to develop a stand density management decision-support software suite for boreal conifers and demonstrate its potential utility in crop planning using practical deployment exemplifications. Denoted CPDSS (CroPlanner Decision-support Software Suite), the program was...
Gespeichert in:
Veröffentlicht in: | Forests 2021-04, Vol.12 (4), p.448 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The objectives of this study were to develop a stand density management decision-support software suite for boreal conifers and demonstrate its potential utility in crop planning using practical deployment exemplifications. Denoted CPDSS (CroPlanner Decision-support Software Suite), the program was developed by transcribing algorithmic analogues of structural stand density management diagrams previously developed for even-aged black spruce (Picea mariana (Mill) BSP.) and jack pine (Pinus banksiana Lamb.) stand-types into an integrated software platform with shared commonalities with respect to computational structure, input requirements and generated numerical and graphical outputs. The suite included 6 stand-type-specific model variants (natural-origin monospecific upland black spruce and jack pine stands, mixed upland black spruce and jack pine stands, and monospecific lowland black spruce stands, and plantation-origin monospecific upland black spruce and jack pine stands), and 4 climate-sensitive stand-type-specific model variants (monospecific upland black spruce and jack pine natural-origin and planted stands). The underlying models which were equivalent in terms of their modular structure, parameterization analytics and geographic applicability, were enabled to address a diversity of crop planning scenarios when integrated within the software suite (e.g., basic, extensive, intensive and elite silvicultural regimes). Algorithmically, the Windows® (Microsoft Corporation, Redmond, WA, USA) based suite was developed by recoding the Fortran-based algorithmic model variants into a collection of VisualBasic.Net® (Microsoft Corporation, Redmond, WA, USA) equivalents and augmenting them with intuitive graphical user interfaces (GUIs), optional computer-intensive optimization applications for automated crop plan selection, and interactive tabular and charting reporting tools inclusive of static and dynamic stand visualization capabilities. In order to address a wide range of requirements from the end-user community and facilitate potential deployment within provincially regulated forest management planning systems, a participatory approach was used to guide software design. As exemplified, the resultant CPDSS can be used as an (1) automated crop planning searching tool in which computer-intensive methods are used to find the most appropriate precommercial thinning, commercial thinning and (or) initial espacement (spacing) regime, according to a weighted multiv |
---|---|
ISSN: | 1999-4907 1999-4907 |
DOI: | 10.3390/f12040448 |