Solvent-Directed Morphological Transformation in Covalent Organic Polymers
Synthesis of bi-functional covalent organic polymers in two distinctive morphologies has been accomplished by simply switching the solvent from DMF to DMSO when 1,3,5-tribenzenecarboxyldehyde and 2,5-diaminobenzene sulfonic acid were reacted via Schiff base condensation reaction to afford covalent o...
Gespeichert in:
Veröffentlicht in: | Frontiers in materials 2022-06, Vol.9 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Synthesis of bi-functional covalent organic polymers in two distinctive morphologies has been accomplished by simply switching the solvent from DMF to DMSO when 1,3,5-tribenzenecarboxyldehyde and 2,5-diaminobenzene sulfonic acid were reacted
via
Schiff base condensation reaction to afford covalent organic polymers (COPs) encompassing flower (F-COP
DMF
)- and circular (C-COP
DMSO
)-type morphologies. Chemical and morphological natures of the synthesized COPs were compared by characterization using TEM, SEM, XRD, FT-IR, and XPS analysis techniques. Besides diverse morphology, both the polymeric materials were found to comprise similar chemical natures bearing protonic acid–SO
3
H and Lewis base–C=N functionalities. Subsequently, both the COPs were evaluated for the synthesis of hydroxymethylfurfural (HMF) by the dehydration of fructose to investigate their morphology-dependent catalytic activity. |
---|---|
ISSN: | 2296-8016 2296-8016 |
DOI: | 10.3389/fmats.2022.889679 |