About the Use of Generalized Forms of Derivatives in the Study of Electromagnetic Problems
The use of non-local operators, defining Riemann–Liouville or Caputo derivatives, is a very useful tool to study problems involving non-conventional diffusion problems. The case of electric circuits, ruled by non-integer derivatives or capacitors with fractional dielectric permittivity, is a fairly...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2021-08, Vol.11 (16), p.7505 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The use of non-local operators, defining Riemann–Liouville or Caputo derivatives, is a very useful tool to study problems involving non-conventional diffusion problems. The case of electric circuits, ruled by non-integer derivatives or capacitors with fractional dielectric permittivity, is a fairly natural frame of relevant applications. We use techniques, involving generalized exponential operators, to obtain suitable solutions for this type of problems and eventually discuss specific problems in applications. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app11167505 |