About the Use of Generalized Forms of Derivatives in the Study of Electromagnetic Problems

The use of non-local operators, defining Riemann–Liouville or Caputo derivatives, is a very useful tool to study problems involving non-conventional diffusion problems. The case of electric circuits, ruled by non-integer derivatives or capacitors with fractional dielectric permittivity, is a fairly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2021-08, Vol.11 (16), p.7505
Hauptverfasser: Antonini, Giulio, Dattoli, Giuseppe, Frezza, Fabrizio, Licciardi, Silvia, Loreto, Fabrizio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The use of non-local operators, defining Riemann–Liouville or Caputo derivatives, is a very useful tool to study problems involving non-conventional diffusion problems. The case of electric circuits, ruled by non-integer derivatives or capacitors with fractional dielectric permittivity, is a fairly natural frame of relevant applications. We use techniques, involving generalized exponential operators, to obtain suitable solutions for this type of problems and eventually discuss specific problems in applications.
ISSN:2076-3417
2076-3417
DOI:10.3390/app11167505