Downstream Targets of Cyclic Nucleotides in Plants

Efficient integration of various external and internal signals is required to maintain adaptive cellular function. Numerous distinct signal transduction systems have evolved to allow cells to receive these inputs, to translate their codes and, subsequently, to expand and integrate their meanings. Tw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in plant science 2018-10, Vol.9, p.1428-1428
Hauptverfasser: Świeżawska, Brygida, Duszyn, Maria, Jaworski, Krzysztof, Szmidt-Jaworska, Adriana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Efficient integration of various external and internal signals is required to maintain adaptive cellular function. Numerous distinct signal transduction systems have evolved to allow cells to receive these inputs, to translate their codes and, subsequently, to expand and integrate their meanings. Two of these, cyclic AMP and cyclic GMP, together referred to as the cyclic nucleotide signaling system, are between them. The cyclic nucleotides regulate a vast number of processes in almost all living organisms. Once synthesized by adenylyl or guanylyl cyclases, cyclic nucleotides transduce signals by acting through a number of cellular effectors. Because the activities of several of these effectors are altered simultaneously in response to temporal changes in cyclic nucleotide levels, agents that increase cAMP/cGMP levels can trigger multiple signaling events that markedly affect numerous cellular functions. In this mini review, we summarize recent evidence supporting the existence of cNMP effectors in plant cells. Specifically, we highlight cAMP-dependent protein kinase A (PKA), cGMP-dependent kinase G (PKG), and cyclic nucleotide phosphodiesterases (PDEs). Essentially this manuscript documents the progress that has been achieved in recent decades in improving our understanding of the regulation and function of cNMPs in plants and emphasizes the current gaps and unanswered questions in this field of plant signaling research.
ISSN:1664-462X
1664-462X
DOI:10.3389/fpls.2018.01428