Bunch of Grape-Like Shape PANI/Ag2O/Ag Nanocomposite Photocatalyst for Hydrogen Generation from Wastewater

Polyaniline (PANI) and PANI/Ag2O/Ag composites I and II were prepared under different AgNO3 oxidant concentrations using the oxidative photopolymerization method. The chemical structure and optical, electrical, and morphological properties were determined for the prepared nanocomposite. The PANI/Ag2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Adsorption science & technology 2022, Vol.2022
Hauptverfasser: Hadia, N. M. A., Hajjiah, Ali, Elsayed, Asmaa M., Mohamed, S. H., Alruqi, Mansoor, Shaban, Mohamed, Alzahrani, Fatimah Mohammed, Abdelazeez, Ahmed Adel A., Rabia, Mohamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polyaniline (PANI) and PANI/Ag2O/Ag composites I and II were prepared under different AgNO3 oxidant concentrations using the oxidative photopolymerization method. The chemical structure and optical, electrical, and morphological properties were determined for the prepared nanocomposite. The PANI/Ag2O/Ag composite II has the optimum optical properties, in which the bandgaps of PANI, composite I, and composite II are 3.02, 1.71, and 1.68 eV, respectively, with the morphology of a bunch of grape-like shapes with average particles sizes of 25 nm. Under the optimum optical properties, glass/PANI/Ag2O/Ag composite II electrode is used for hydrogen generation from sewage water. The measurements are carried out from a three-electrode cell under a xenon lamp. The effects of light wavelengths and temperature on the produced current density (Jph) are mentioned. Under the applied voltage (at 30°C), the current density values (Jph) increase from 0.003 to 0.012 mA.cm-2 in dark and light, respectively. While increasing the temperature, Jph values increase to 0.032 mAcm-2 at 60°C. The thermodynamic parameters are calculated, in which the activation energy (Ea), enthalpy (ΔH∗), and entropy (ΔS∗) values are 27.1 kJ·mol-1, 24.5 J mol-1, and 140.5 J K-1 mol-1, respectively. Finally, a simple mechanism for the produced hydrogen generation rate is mentioned. The prepared electrode is a very cheap (1$ for 12∗12 cm2) electrode.
ISSN:0263-6174
2048-4038
DOI:10.1155/2022/4282485