Telugu Dependency Parsing Using Different Statistical Parsers

In this paper, we explore different statistical dependency parsers for parsing Telugu. We consider five popular dependency parsers namely, Malt Parser, MSTParser, Turbo Parser, ZPar and Easy-First Parser. We experiment with different parser and feature settings and show the impact of different setti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of King Saud University. Computer and information sciences 2017, Vol.29 (1), p.134-140
Hauptverfasser: Kumari, B. Venkata Seshu, Rao, Ramisetty Rajeshwara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we explore different statistical dependency parsers for parsing Telugu. We consider five popular dependency parsers namely, Malt Parser, MSTParser, Turbo Parser, ZPar and Easy-First Parser. We experiment with different parser and feature settings and show the impact of different settings. We also provide a detailed analysis of the performance of all the parsers on major dependency labels. We report our results on test data of Telugu dependency Treebank provided in the ICON 2010 tools contest on Indian languages dependency parsing. We obtain state of-the art performance of 91.8% in unlabeled attachment score and 70.0% in labeled attachment score. To the best of our knowledge ours is the only work, which explored all the five popular dependency parsers and compared the performance under different feature settings for Telugu.
ISSN:1319-1578
2213-1248
DOI:10.1016/j.jksuci.2014.12.006