Modulation Recognition of Radar Signals Based on Adaptive Singular Value Reconstruction and Deep Residual Learning

Automatically recognizing the modulation of radar signals is a necessary survival technique in electronic intelligence systems. In order to avoid the complex process of the feature extracting and realize the intelligent modulation recognition of various radar signals under low signal-to-noise ratios...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-01, Vol.21 (2), p.449
Hauptverfasser: Chen, Kuiyu, Zhang, Shuning, Zhu, Lingzhi, Chen, Si, Zhao, Huichang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Automatically recognizing the modulation of radar signals is a necessary survival technique in electronic intelligence systems. In order to avoid the complex process of the feature extracting and realize the intelligent modulation recognition of various radar signals under low signal-to-noise ratios (SNRs), this paper proposes a method based on intrapulse signatures of radar signals using adaptive singular value reconstruction (ASVR) and deep residual learning. Firstly, the time-frequency spectrums of radar signals under low SNRs are improved after ASVR denoising processing. Secondly, a series of image processing techniques, including binarizing and morphologic filtering, are applied to suppress the background noise in the time-frequency distribution images (TFDIs). Thirdly, the training process of the residual network is achieved using TFDIs, and classification under various conditions is realized using the new-trained network. Simulation results show that, for eight kinds of modulation signals, the proposed approach still achieves an overall probability of successful recognition of 94.1% when the SNR is only -8 dB. Outstanding performance proves the superiority and robustness of the proposed method.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21020449