Evaluation of Selected Performance Properties of Nanoclay-Modified Asphalt Binders

Asphalt binders are often modified with additives such as acid, polymer, or a combination of multiple additives to achieve improved performance to sustain heavy loads and adverse weather conditions. According to some previous researches, nanoclay can be a good alternative of currently practiced Styr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MATEC web of conferences 2019, Vol.271, p.3006
Hauptverfasser: Hassan, Mohammad N., Tariq Morshed, M M, Hossain, Zahid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Asphalt binders are often modified with additives such as acid, polymer, or a combination of multiple additives to achieve improved performance to sustain heavy loads and adverse weather conditions. According to some previous researches, nanoclay can be a good alternative of currently practiced Styrene-Butadiene-Styrene (SBS) modification, and the former is expected to reduce the overall cost of the asphalt binder. Three types of nanoclay (Cloisite 10A, 11B, and 15A) were blended with asphalt binders prepared from two different sources (Arabian Crude and Canadian Crude). A blending protocol has been developed to blend nanoclay with the base binders. Mechanical properties including viscosity, rutting parameter have undergone significant changes after the nanoclay modification. It was also observed that nanoclay modified binders offer different moisture susceptibility while bonding with different aggregates; the nanoclay modified asphalt binder exhibits better bonding with gravel than sandstone. Mechanistic properties such as viscosity and rutting parameter are found to be highly correlated with the chemical compositions. Binders from the Canadian crude showed more colloidal stability than binders from the Arabian crude after nanoclay modification.
ISSN:2261-236X
2274-7214
2261-236X
DOI:10.1051/matecconf/201927103006