Bridging the Gap between Design and Simulation of Low-Voltage CMOS Circuits
This work proposes a truly compact MOSFET model that contains only four parameters to assist an integrated circuits (IC) designer in a design by hand. The four-parameter model (4PM) is based on the advanced compact MOSFET (ACM) model and was implemented in Verilog-A to simulate different circuits de...
Gespeichert in:
Veröffentlicht in: | Journal of low power electronics and applications 2022-06, Vol.12 (2), p.34 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work proposes a truly compact MOSFET model that contains only four parameters to assist an integrated circuits (IC) designer in a design by hand. The four-parameter model (4PM) is based on the advanced compact MOSFET (ACM) model and was implemented in Verilog-A to simulate different circuits designed with the ACM model in Verilog-compatible simulators. Being able to simulate MOS circuits through the same model used in a hand design benefits designers in understanding how the main MOSFET parameters affect the design. Herein, the classic CMOS inverter, a ring oscillator, a self-biased current source and a common source amplifier were designed and simulated using either the 4PM or the BSIM model. The four-parameter model was simulated in many sorts of circuits with very satisfactory results in the low-voltage cases. As the ultra-low-voltage (ULV) domain is expanding due to applications, such as the internet of things and wearable circuits, so is the use of a simplified ULV MOSFET model. |
---|---|
ISSN: | 2079-9268 2079-9268 |
DOI: | 10.3390/jlpea12020034 |