Topological classification of critical points for hairy black holes in Lovelock gravity

In various fields of mathematical research, the Brouwer degree is a potent tool for topological analysis. By using the Brouwer degree defined in one-dimensional space, we interpret the equation of state for temperature in black hole thermodynamics, T = T ( V , x i ) , as a spinodal curve, with its d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. C, Particles and fields Particles and fields, 2024-12, Vol.84 (12), p.1251-10, Article 1251
Hauptverfasser: Zhang, Meng-Yao, Zhou, Hou-You, Chen, Hao, Hassanabadi, Hassan, Long, Zheng-Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In various fields of mathematical research, the Brouwer degree is a potent tool for topological analysis. By using the Brouwer degree defined in one-dimensional space, we interpret the equation of state for temperature in black hole thermodynamics, T = T ( V , x i ) , as a spinodal curve, with its derivative defining a new function f . The sign of the slope of f indicates the topological charge of the black hole’s critical points, and the total topological charge can be deduced from the asymptotic behavior of the function f . We analyze a spherical hairy black hole within the framework of Lovelock gravity, paying particular attention to the topological structure of black hole thermodynamics under Gauss–Bonnet gravity. Here, the sign of the scalar hair parameter influences the topological classification of uncharged black holes. When exploring the thermodynamic topological properties of hairy black holes under cubic Lovelock gravity, we find that the spherical hairy black hole reproduces the thermodynamic topological classification results seen under Gauss–Bonnet gravity.
ISSN:1434-6052
1434-6044
1434-6052
DOI:10.1140/epjc/s10052-024-13586-9