Vaccine Efficacy of Self-Assembled Multimeric Protein Scaffold Particles Displaying the Glycoprotein Gn Head Domain of Rift Valley Fever Virus

Compared to free antigens, antigens immobilized on scaffolds, such as nanoparticles, generally show improved immunogenicity. Conventionally, antigens are conjugated to scaffolds through genetic fusion or chemical conjugation, which may result in impaired assembly or heterogeneous binding and orienta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vaccines (Basel) 2021-03, Vol.9 (3), p.301
Hauptverfasser: Wichgers Schreur, Paul J, Tacken, Mirriam, Gutjahr, Benjamin, Keller, Markus, van Keulen, Lucien, Kant, Jet, van de Water, Sandra, Lin, Yanyin, Eiden, Martin, Rissmann, Melanie, von Arnim, Felicitas, König, Rebecca, Brix, Alexander, Charreyre, Catherine, Audonnet, Jean-Christophe, Groschup, Martin H, Kortekaas, Jeroen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Compared to free antigens, antigens immobilized on scaffolds, such as nanoparticles, generally show improved immunogenicity. Conventionally, antigens are conjugated to scaffolds through genetic fusion or chemical conjugation, which may result in impaired assembly or heterogeneous binding and orientation of the antigens. By combining two emerging technologies-i.e., self-assembling multimeric protein scaffold particles (MPSPs) and bacterial superglue-these shortcomings can be overcome and antigens can be bound on particles in their native conformation. In the present work, we assessed whether this technology could improve the immunogenicity of a candidate subunit vaccine against the zoonotic Rift Valley fever virus (RVFV). For this, the head domain of glycoprotein Gn, a known target of neutralizing antibodies, was coupled on various MPSPs to further assess immunogenicity and efficacy in vivo. The results showed that the Gn head domain, when bound to the lumazine synthase-based MPSP, reduced mortality in a lethal mouse model and protected lambs, the most susceptible RVFV target animals, from viremia and clinical signs after immunization. Furthermore, the same subunit coupled to two other MPSPs ( E2 or a modified KDPG Aldolase) provided full protection in lambs as well.
ISSN:2076-393X
2076-393X
DOI:10.3390/vaccines9030301