High radiative forcing climate scenario relevance analyzed with a ten-million-member ensemble

Developing future climate projections begins with choosing future emissions scenarios. While scenarios are often based on storylines, here instead we produce a probabilistic multi-million-member ensemble of radiative forcing trajectories to assess the relevance of future forcing thresholds. We coupl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-09, Vol.15 (1), p.8185-10, Article 8185
Hauptverfasser: Sarofim, Marcus C., Smith, Christopher J., Malek, Parker, McDuffie, Erin E., Hartin, Corinne A., Lay, Claire R., McGrath, Sarah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Developing future climate projections begins with choosing future emissions scenarios. While scenarios are often based on storylines, here instead we produce a probabilistic multi-million-member ensemble of radiative forcing trajectories to assess the relevance of future forcing thresholds. We coupled a probabilistic database of future greenhouse gas emission scenarios with a probabilistically calibrated reduced complexity climate model. In 2100, we project median forcings of 5.1 watt per square meters (5th to 95th percentiles of 3.3 to 7.1), with roughly 0.5% probability of exceeding 8.5 watt per square meters, and a 1% probability of being lower than 2.6 watt per square meters. Although the probability of 8.5 watt per square meters scenarios is low, our results support their continued utility for calibrating damage functions, characterizing climate in the 22 nd century (the probability of exceeding 8.5 watt per square meters increases to about 7% by 2150), and assessing low-probability/high-impact futures. The probability of exceeding various climate thresholds has been calculated. While the warmest future scenario has less than a 1 percent chance of being exceeded this century, the paper discusses why such warm scenarios are still relevant.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-52437-9