Induction of inverted morphology in brain organoids by vertical-mixing bioreactors

Organoid technology provides an opportunity to generate brain-like structures by recapitulating developmental steps in the manner of self-organization. Here we examined the vertical-mixing effect on brain organoid structures using bioreactors and established inverted brain organoids. The organoids g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications biology 2021-10, Vol.4 (1), p.1213-1213, Article 1213
Hauptverfasser: Suong, Dang Ngoc Anh, Imamura, Keiko, Inoue, Ikuyo, Kabai, Ryotaro, Sakamoto, Satoko, Okumura, Tatsuya, Kato, Yoshikazu, Kondo, Takayuki, Yada, Yuichiro, Klein, William L., Watanabe, Akira, Inoue, Haruhisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Organoid technology provides an opportunity to generate brain-like structures by recapitulating developmental steps in the manner of self-organization. Here we examined the vertical-mixing effect on brain organoid structures using bioreactors and established inverted brain organoids. The organoids generated by vertical mixing showed neurons that migrated from the outer periphery to the inner core of organoids, in contrast to orbital mixing. Computational analysis of flow dynamics clarified that, by comparison with orbital mixing, vertical mixing maintained the high turbulent energy around organoids, and continuously kept inter-organoid distances by dispersing and adding uniform rheological force on organoids. To uncover the mechanisms of the inverted structure, we investigated the direction of primary cilia, a cellular mechanosensor. Primary cilia of neural progenitors by vertical mixing were aligned in a multidirectional manner, and those by orbital mixing in a bidirectional manner. Single-cell RNA sequencing revealed that neurons of inverted brain organoids presented a GABAergic character of the ventral forebrain. These results suggest that controlling fluid dynamics by biomechanical engineering can direct stem cell differentiation of brain organoids, and that inverted brain organoids will be applicable for studying human brain development and disorders in the future. Dang Ngoc Anh Suong et al find that vertical mixing generates iPSC-derived brain organoids displaying an inverted structure with neurons localising at the centre and neural progenitors at the outside. This study illustrates the influence of fluid mechanics relevant to the direction of primary cilia on stem cell differentiation.
ISSN:2399-3642
2399-3642
DOI:10.1038/s42003-021-02719-5