Preliminary Design of a GNSS Interference Mapping CubeSat Mission: JamSail

The JamSail mission is an educational CubeSat aiming to design, develop, and demonstrate two new technologies on a small satellite, tentatively scheduled for launch no earlier than 2026. When launched, JamSail will demonstrate the functionality of two new payloads in low Earth orbit. First, a flexib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aerospace 2024-11, Vol.11 (11), p.901
Hauptverfasser: Cormier, Luis, Yousif, Tasneem, Thompson, Samuel, Arcia Gil, Angel, Pushparaj, Nishanth, Blunt, Paul, Cappelletti, Chantal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The JamSail mission is an educational CubeSat aiming to design, develop, and demonstrate two new technologies on a small satellite, tentatively scheduled for launch no earlier than 2026. When launched, JamSail will demonstrate the functionality of two new payloads in low Earth orbit. First, a flexible, low-cost GNSS interference detection payload capable of characterising and geolocating the sources of radio interference regarding the E1/L1 and E5a/L5 bands will be demonstrated on a global scale. The data produced by this payload can be used to target anti-interference actions in specific regions and aid in the design of future GNSS receivers to better mitigate specific types of interference. If successful, the flexibility of the payload will allow it to be remotely reconfigured in orbit to investigate additional uses of the technology, including a potential demonstration of GNSS reflectometry aboard a CubeSat. Second, a compact refractive solar sail will be deployed that is capable of adjusting the orbit of JamSail in the absence of an on-board propellant. This sail will be used to gradually raise the semi-major axis of JamSail over the span of the mission before being used to perform rapid passive deorbit near the end-of-life juncture. Additionally, self-stabilising optical elements within the sail will be used to demonstrate a novel method of performing attitude control. JamSail is currently in the testing phase, and the payloads will continue to be refined until the end of 2024. This paper discusses the key objectives of the JamSail mission, the design of the payloads, the expected outcomes of the mission, and future opportunities regarding the technologies as a whole.
ISSN:2226-4310
2226-4310
DOI:10.3390/aerospace11110901