Capture and Prediction of Rainfall-Induced Landslide Warning Signals Using an Attention-Based Temporal Convolutional Neural Network and Entropy Weight Methods

The capture and prediction of rainfall-induced landslide warning signals is the premise for the implementation of landslide warning measures. An attention-fusion entropy weight method (En-Attn) for capturing warning features is proposed. An attention-based temporal convolutional neural network (ATCN...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2022-08, Vol.22 (16), p.6240
Hauptverfasser: Zhang, Di, Wei, Kai, Yao, Yi, Yang, Jiacheng, Zheng, Guolong, Li, Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The capture and prediction of rainfall-induced landslide warning signals is the premise for the implementation of landslide warning measures. An attention-fusion entropy weight method (En-Attn) for capturing warning features is proposed. An attention-based temporal convolutional neural network (ATCN) is used to predict the warning signals. Specifically, the sensor data are analyzed using Pearson correlation analysis after obtaining data from the sensors on rainfall, moisture content, displacement, and soil stress. The comprehensive evaluation score is obtained offline using multiple entropy weight methods. Then, the attention mechanism is used to weight and sum different entropy values to obtain the final landslide hazard degree (LHD). The LHD realizes the warning signal capture of the sensor data. The prediction process adopts a model built by ATCN and uses a sliding window for online dynamic prediction. The input is the landslide sensor data at the last moment, and the output is the LHD at the future moment. The effectiveness of the method is verified by two datasets obtained from the rainfall-induced landslide simulation experiment.
ISSN:1424-8220
1424-8220
DOI:10.3390/s22166240