Non-Gaussian interaction information: estimation, optimization and diagnostic application of triadic wave resonance

Non-Gaussian multivariate probability distributions, derived from climate and geofluid statistics, allow for nonlinear correlations between linearly uncorrelated components, due to joint Shannon negentropies. Triadic statistical dependence under pair-wise (total or partial) independence is thus poss...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear processes in geophysics 2015-01, Vol.22 (1), p.87-108
Hauptverfasser: Pires, C. A. L., Perdigão, R. A. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Non-Gaussian multivariate probability distributions, derived from climate and geofluid statistics, allow for nonlinear correlations between linearly uncorrelated components, due to joint Shannon negentropies. Triadic statistical dependence under pair-wise (total or partial) independence is thus possible. Synergy or interaction information among triads is estimated. We formulate an optimization method of triads in the space of orthogonal rotations of normalized principal components, relying on the maximization of third-order cross-cumulants. Its application to a minimal one-dimensional, periodic, advective model leads to enhanced triads that occur between oscillating components of circular or locally confined wave trains satisfying the triadic wave resonance condition.
ISSN:1607-7946
1023-5809
1607-7946
DOI:10.5194/npg-22-87-2015