Approximating Fixed Points of Relatively Nonexpansive Mappings via Thakur Iteration
The study of symmetry is a major tool in the nonlinear analysis. The symmetricity of distance function in a metric space plays important role in proving the existence of a fixed point for a self mapping. In this work, we approximate a fixed point of noncyclic relatively nonexpansive mappings by usin...
Gespeichert in:
Veröffentlicht in: | Symmetry (Basel) 2022-06, Vol.14 (6), p.1107 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The study of symmetry is a major tool in the nonlinear analysis. The symmetricity of distance function in a metric space plays important role in proving the existence of a fixed point for a self mapping. In this work, we approximate a fixed point of noncyclic relatively nonexpansive mappings by using a three-step Thakur iterative scheme in uniformly convex Banach spaces. We also provide a numerical example where the Thakur iterative scheme is faster than some well known iterative schemes such as Picard, Mann, and Ishikawa iteration. Finally, we provide a stronger version of our proposed theorem via von Neumann sequences. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym14061107 |