Approximating Fixed Points of Relatively Nonexpansive Mappings via Thakur Iteration

The study of symmetry is a major tool in the nonlinear analysis. The symmetricity of distance function in a metric space plays important role in proving the existence of a fixed point for a self mapping. In this work, we approximate a fixed point of noncyclic relatively nonexpansive mappings by usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2022-06, Vol.14 (6), p.1107
Hauptverfasser: Pragadeeswarar, V., Gopi, R., Sen, M. De la
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The study of symmetry is a major tool in the nonlinear analysis. The symmetricity of distance function in a metric space plays important role in proving the existence of a fixed point for a self mapping. In this work, we approximate a fixed point of noncyclic relatively nonexpansive mappings by using a three-step Thakur iterative scheme in uniformly convex Banach spaces. We also provide a numerical example where the Thakur iterative scheme is faster than some well known iterative schemes such as Picard, Mann, and Ishikawa iteration. Finally, we provide a stronger version of our proposed theorem via von Neumann sequences.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym14061107