Repeated batches as a strategy for high 2G ethanol production from undetoxified hemicellulose hydrolysate using immobilized cells of recombinant Saccharomyces cerevisiae in a fixed-bed reactor
The search for sustainable energy sources has become a worldwide issue, making the development of efficient biofuel production processes a priority. Immobilization of second-generation (2G) xylose-fermenting strains is a promising approach to achieve economic viability of 2G bioethanol production fr...
Gespeichert in:
Veröffentlicht in: | Biotechnology for biofuels 2020-05, Vol.13 (1), p.85-85, Article 85 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The search for sustainable energy sources has become a worldwide issue, making the development of efficient biofuel production processes a priority. Immobilization of second-generation (2G) xylose-fermenting
strains is a promising approach to achieve economic viability of 2G bioethanol production from undetoxified hydrolysates through operation at high cell load and mitigation of inhibitor toxicity. In addition, the use of a fixed-bed reactor can contribute to establish an efficient process because of its distinct advantages, such as high conversion rate per weight of biocatalyst and reuse of biocatalyst.
This work assessed the influence of alginate entrapment on the tolerance of recombinant
to acetic acid. Encapsulated GSE16-T18SI.1 (T18) yeast showed an outstanding performance in repeated batch fermentations with cell recycling in YPX medium supplemented with 8 g/L acetic acid (pH 5.2), achieving 10 cycles without significant loss of productivity. In the fixed-bed bioreactor, a high xylose fermentation rate with ethanol yield and productivity values of 0.38 g
/g
and 5.7 g/L/h, respectively were achieved in fermentations using undetoxified sugarcane bagasse hemicellulose hydrolysate, with and without medium recirculation.
The performance of recombinant strains developed for 2G ethanol production can be boosted strongly by cell immobilization in alginate gels. Yeast encapsulation allows conducting fermentations in repeated batch mode in fixed-bed bioreactors with high xylose assimilation rate and high ethanol productivity using undetoxified hemicellulose hydrolysate. |
---|---|
ISSN: | 1754-6834 1754-6834 |
DOI: | 10.1186/s13068-020-01722-y |