Construction of AQHI based on joint effects of multi-pollutants in 5 provinces of China
BackgroundAir pollution is a major public health concern. Air Quality Health Index (AQHI) is a very important air quality risk communication tool. However, AQHI is usually constructed by single-pollutant model, which has obvious disadvantages.ObjectiveTo construct an AQHI based on the joint effects...
Gespeichert in:
Veröffentlicht in: | Huan jing yu zhi ye yi xue = Journal of environmental & occupational medicine 2023-03, Vol.40 (3), p.281-288 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | BackgroundAir pollution is a major public health concern. Air Quality Health Index (AQHI) is a very important air quality risk communication tool. However, AQHI is usually constructed by single-pollutant model, which has obvious disadvantages.ObjectiveTo construct an AQHI based on the joint effects of multiple air pollutants (J-AQHI), and to provide a scientific tool for health risk warning and risk communication of air pollution.MethodsData on non-accidental deaths in Yunnan, Guangdong, Hunan, Zhejiang, and Jilin provinces from January 1, 2013 to December 31, 2018 were obtained from the corresponding provincial disease surveillance points systems (DSPS), including date of death, age, gender, and cause of death. Daily meteorological (temperature and relative humidity) and air pollution data (SO2, NO2, CO, PM2.5, PM10, and maximum 8 h O3 concentrations) at the same period were respectively derived from China Meteorological Data Sharing Service System and National Urban Air Quality Real-time Publishing Platform. Lasso regression was first applied to select air pollutants, then a time-stratified case-crossover design was applied. Each case was matched to 3 or 4 control days which were selected on the same days of the week in the same calendar month. Then a distributed lag nonlinear model (DLNM) was used to estimate the exposure-response relationship between selected air pollutants and mortality, which was used to construct the AQHI. Finally, AQHI was classified into four levels according to the air pollutant guidance limit values from World Health Organization Global Air Quality Guidelines (AQG 2021), and the excess risks (ERs) were calculated to compare the AQHI based on single-pollutant model and the J-AQHI based on multi-pollutant model.ResultsPM2.5, NO2, SO2, and O3 were selected by Lasso regression to establish DLNM model. The ERs for an interquartile range (IQR) increase and 95% confidence intervals (CI) for PM2.5, NO2, SO2 and O3 were 0.71% (0.34%–1.09%), 2.46% (1.78%–3.15%), 1.25% (0.9%–1.6%), and 0.27% (−0.11%–0.65%) respectively. The distribution of J-AQHI was right-skewed, and it was divided into four levels, with ranges of 0-1 for low risk, 2-3 for moderate risk, 4-5 for high health risk, and ≥6 for severe risk, and the corresponding proportions were 11.25%, 64.61%, 19.33%, and 4.81%, respectively. The ER (95%CI) of mortality risk increased by 3.61% (2.93–4.29) for each IQR increase of the multi-pollutant based J-AQHI , while it was 3.39% (2.68–4. |
---|---|
ISSN: | 2095-9982 |
DOI: | 10.11836/JEOM22425 |