Resilience of hydraulic structures under significant impact of typhoons
Vulnerability to natural disasters falls into three categories: exposure, resistance, and resilience, where resilience mainly refers to the capability of a pressure-bearing system to recover by returning to its initial state, that is, the ability to adapt to disaster pressure. Resilience is a major...
Gespeichert in:
Veröffentlicht in: | Water Science and Engineering 2011-09, Vol.4 (3), p.284-293 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Vulnerability to natural disasters falls into three categories: exposure, resistance, and resilience, where resilience mainly refers to the capability of a pressure-bearing system to recover by returning to its initial state, that is, the ability to adapt to disaster pressure. Resilience is a major subject of research on disaster prevention and mitigation. This research mainly focuses on the ability of the hydraulic structure to recover from the significant impacts of typhoons. According to the load/unload response ratio theory, the degree of instability by which nonlinear systems can be identified according to the difference between load and unload responses was analyzed. This analysis was used as a basis to study the resilience of a hydraulic structure. Taking the Yangtze River embankments under the impact of Typhoon Matsa as an example, the ability of the typical sections of different types of embankments to adapt to the significant impact of the typhoon, i.e., the resilience of the hydraulic structure, is described with the help of the load/unload response ratio (L). The results of the calculated resilience reflect the actual conditions of the structure and can be used to determine the applicability of the embankment section. The load/unload response ratio theory is one of the effective tools for calculating the resilience of hydraulic structures under the significant impacts of typhoons. |
---|---|
ISSN: | 1674-2370 |
DOI: | 10.3882/j.issn.1674-2370.2011.03.005 |