A benchmarking study of quantum algorithms for combinatorial optimization

We study the performance scaling of three quantum algorithms for combinatorial optimization: measurement-feedback coherent Ising machines (MFB-CIM), discrete adiabatic quantum computation (DAQC), and the Dürr–Høyer algorithm for quantum minimum finding (DH-QMF) that is based on Grover’s search. We u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:npj quantum information 2024-06, Vol.10 (1), p.64-21, Article 64
Hauptverfasser: Sankar, Krishanu, Scherer, Artur, Kako, Satoshi, Reifenstein, Sam, Ghadermarzy, Navid, Krayenhoff, Willem B., Inui, Yoshitaka, Ng, Edwin, Onodera, Tatsuhiro, Ronagh, Pooya, Yamamoto, Yoshihisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the performance scaling of three quantum algorithms for combinatorial optimization: measurement-feedback coherent Ising machines (MFB-CIM), discrete adiabatic quantum computation (DAQC), and the Dürr–Høyer algorithm for quantum minimum finding (DH-QMF) that is based on Grover’s search. We use M ax C ut problems as a reference for comparison, and time-to-solution (TTS) as a practical measure of performance for these optimization algorithms. For each algorithm, we analyze its performance in solving two types of M ax C ut problems: weighted graph instances with randomly generated edge weights attaining 21 equidistant values from −1 to 1; and randomly generated Sherrington–Kirkpatrick (SK) spin glass instances. We empirically find a significant performance advantage for the studied MFB-CIM in comparison to the other two algorithms. We empirically observe a sub-exponential scaling for the median TTS for the MFB-CIM, in comparison to the almost exponential scaling for DAQC and the proven O ̃ 2 n scaling for DH-QMF. We conclude that the MFB-CIM outperforms DAQC and DH-QMF in solving M ax C ut problems.
ISSN:2056-6387
2056-6387
DOI:10.1038/s41534-024-00856-3